Keratoviz-A multistage keratoconus severity analysis and visualization using deep learning and class activated maps

Priya Dhinakaran, Mamatha Gowdra Shivanandappa, Srijan Devnath


The detection of keratoconus has been a difficult and arduous process over the years for ophthalmologists who have devised traditional approaches of diagnosis including the slit-lamp examination and observation of thinning of the corneal. The main contribution of this paper is using deep learning models namely Resnet50 and EfficientNet to not just detect whether an eye has been infected with keratoconus or not but also accurately detect the stages of infection namely mild, moderate, and advanced. The dataset used consists of corneal topographic maps and pentacam images. Individually the models achieved 97% and 94% accuracy on the dataset. We have also employed class activated maps (CAM) to observe and help visualize which areas of the images are utilized when making classifications for the different stages of keratoconus. Using deep learning models to predict the detection and severity of the infection can drastically speed up and provide accurate results at the same time.


Class activated map; Deep learning; Keratoconus; Topography map; Visualization

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).