A survey of deepfakes in terms of deep learning and multimedia forensics

Wildan Jameel Hadi, Suhad Malallah Kadhem, Ayad Rodhan Abbas


Artificial intelligence techniques are reaching us in several forms, some of which are useful but can be exploited in a way that harms us. One of these forms is called deepfakes. Deepfakes is used to completely modify video (or image) content to display something that was not in it originally. The danger of deepfake technology impact on society through the loss of confidence in everything is published. Therefore, in this paper, we focus on deepfakedetection technology from the view of two concepts which are deep learning and forensic tools. The purpose of this survey is to give the reader a deeper overview of i) the environment of deepfake creation and detection, ii) how deep learning and forensic tools contributed to the detection of deepfakes, and iii) finally how in the future incorporating both deep learning technology and tools for forensics can increase the efficiency of deepfakes detection.


Autoencoder; Deep learning; Deepfake; Generative adversarial network; Multimedia forensics;

Full Text:


DOI: http://doi.org/10.11591/ijece.v12i4.pp4408-4414

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).