A modified residual network for detection and classification of Alzheimer’s disease

Faten Salim Hanoon, Abbas Hanon Hassin Alasadi

Abstract


Alzheimer's disease (AD) is a brain disease that significantly declines a person's ability to remember and behave normally. By applying several approaches to distinguish between various stages of AD, neuroimaging data has been used to extract different patterns associated with various phases of AD. However, because the brain patterns of older adults and those in different phases are similar, researchers have had difficulty classifying them. In this paper, the 50-layer ResNet is modified by adding extra convolution layers to make the extracted features more diverse. Besides, the activation function (ReLU) was replaced with (Leaky ReLU) because ReLU takes the negative parts of its input, drops them to zero, and retains the positive parts. These negative inputs may contain useful feature information that could aid in the development of high-level discriminative features. Thus, Leaky ReLU was used instead of ReLU to prevent any potential loss of input information. In order to train the network from scratch without encountering the issue of overfitting, we added a dropout layer before the fully connected layer. The proposed method successfully classified the four stages of AD with an accuracy of 97.49 % and 98 % for precision, recall, and f1-score.


Keywords


Alzheimer's disease; CNN; Deep learning; Medical imaging; Transfer learning;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v12i4.pp4400-4407

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).