Development of deep reinforcement learning for inverted pendulum

Khoa Nguyen Dang, Van Tran Thi, Long Vu Van


This paper presents a modification of the deep Q-network (DQN) in deep reinforcement learning to control the angle of the inverted pendulum (IP). The original DQN method often uses two actions related to two force states like constant negative and positive force values which apply to the cart of IP to maintain the angle between the pendulum and the Y-axis. Due to the changing of too much value of force, the IP may make some oscillation which makes the performance system could be declined. Thus, a modified DQN algorithm is developed based on neural network structure to make a range of force selections for IP to improve the performance of IP. To prove our algorithm, the OpenAI/Gym and Keras libraries are used to develop DQN. All results showed that our proposed controller has higher performance than the original DQN and could be applied to a nonlinear system.


deep Q-network; inverted pendulum; neural network; OpenAI/Gym; reinforcement learning;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).