Electrocardiograph signal recognition using wavelet transform based on optimized neural network

Ali Talib Jawad, Dalael Saad Abdul-Zahra, Hassan Muwafaq Gheni, Ali Najim Abdullah

Abstract


Due to the growing number of cardiac patients, an automatic detection that detects various heart abnormalities has been developed to relieve and share physicians’ workload. Many of the depolarization of ventricles complex waves (QRS) detection algorithms with multiple properties have recently been presented; nevertheless, real-time implementations in low-cost systems remain a challenge due to limited hardware resources. The proposed algorithm finds a solution for the delay in processing by minimizing the input vector’s dimension and, as a result, the classifier’s complexity. In this paper, the wavelet transform is employed for feature extraction. The optimized neural network is used for classification with 8-classes for the electrocardiogram (ECG) signal this data is taken from two ECG signals (ST-T and MIT-BIH database). The wavelet transform coefficients are used for the artificial neural network’s training process and optimized by using the invasive weed optimization (IWO) algorithm. The suggested system has a sensitivity of over 70%, a specificity of over 94%, a positive predictive of over 65%, a negative predictive of more than 93%, and a classification accuracy of more than 80%. The performance of the classifier improves when the number of neurons in the hidden layer is increased.

Keywords


Electrocardiogram recognitions; Invasive weed optimization; Optimized neural networks; Patterns recognition; Wavelet transforms

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v12i5.pp4944-4950

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).