Design of Savonius model wind turbine for power catchment
Abstract
In this study, the fossil fuel usage by-product is carbon dioxide, which is known as the primary cause in global warming. Alternatively, wind energy is a clean alternative energy source compared the fuel consumption can cause smoke pollution. The goal of the work is to develop a pollution controller device model Savonius wind turbine to represent the characterized actual speed wind turbine concepts into convert kinetic energy into electric energy from campus and monitoring all output data display on the cloud. The wind speed operation is enabled through the use of ESP8266 as internet of things (IoT) platform and the alternating current (AC) direct current (DC) harvesting circuit into improve stability of the wind energy performance. Secondly, a magnet coil synchronous generator is used, which is a grid coupled through a diode rectifier and voltage source converter. The parameters that have been measured using wireless fidelity (Wi-Fi) module ESP8266 are considering wind speed, current, voltage and power. The wind speed with 7.8 MPH can produce a maximum output voltage and output current of 1.104 V and 4.321 μA, respectively. Blynk applications functional as role present performance monitoring kit wind turbine analysis with more precise and efficient in anywhere and anytime.
Keywords
Savonius model; wind energy; wind power generation; wind speed; wind turbine;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v12i3.pp2285-2299
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).