Analysis of earthquake hazards prediction with multivariate adaptive regression splines
Abstract
Earthquake research has not yielded promising results, either in the form of causes or revealing the timing of their future events. Many methods have been developed, one of which is related to data mining, such as the use of hybrid neural networks, support vector regressor, fuzzy modeling, clustering, and others. Earthquake research has uncertain parameters and to obtain optimal results an appropriate method is needed. In general, several predictive data mining methods are grouped into two categories, namely parametric and non-parametric. This study uses a non-parametric method with multivariate adaptive regression spline (MARS) and conic multivariate adaptive regression spline (CMARS) as the backward stage of the MARS algorithm. The results of this study after parameter testing and analysis obtained a mathematical model with 16 basis functions (BF) and 12 basis functions contributing to the model and 4 basis functions not contributing to the model. Based on the level of variable contribution, it can be written that the epicenter distance is 100 percent, the magnitude is 31.1 percent, the location temperature is 5.5 percent, and the depth is 3.5 percent. It can be concluded that the results of the prediction analysis of areas in Lombok with the highest earthquake hazard level are Malaka, Genggelang, Pemenang, Tanjung, Tegal Maja, Senggigi, Mangsit. Meninting, and Malimbu.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v12i3.pp2885-2893
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).