Economic dispatch by optimization techniques
Abstract
The current paper offers the solution strategy for the economic dispatch problem in electric power system implementing ant lion optimization algorithm (ALOA) and bat algorithm (BA) techniques. In the power network, the economic dispatch (ED) is a short-term calculation of the optimum performance of several electricity generations or a plan of outputs of all usable power generation units from the energy produced to fulfill the necessary demand, although equivalent and unequal specifications need to be achieved at minimal fuel and carbon pollution costs. In this paper, two recent meta-heuristic approaches are introduced, the BA and ALOA. A rigorous stochastically developmental computing strategy focused on the action and intellect of ant lions is an ALOA. The ALOA imitates ant lions' hunting process. The introduction of a numerical description of its biological actions for the solution of ED in the power framework. These algorithms are applied to two systems: a small scale three generator system and a large scale six generator. Results show were compared on the metrics of convergence rate, cost, and average run time that the ALOA and BA are suitable for economic dispatch studies which is clear in the comparison set with other algorithms. Both of these algorithms are tested on IEEE-30 bus reliability test system.
Keywords
ant lion optimization; bat algorithm optimization; economic dispatch; IEEE-30;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v12i3.pp2228-2241
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).