Novel asymmetric space vector pulse width modulation for dead-time processing in three-phase power converters
Abstract
This research analyzes the asymmetric control strategies in multilevel inverters, including asymmetric techniques in space vector modulation of power converters. Modulation parameters such as reference voltage vector (Vref), switching time, and duty cycle are derived in the three-dimensional spatial vector geometry formulation. Asymmetric space vector pulse width modulation (SVPWM) is unique in specifying modulation parameters, has unequal tetrahedron patterns, accompanied by application examples for the upper and lower sector pairs of a tetrahedron. The combination of the switch in the form of an inclined cylinder produces twelve pairs of asymmetric tetrahedrons where the voltage vector positions are in the other twenty-four tetrahedrons. The calculation shows processing dead-time in switching, which is used for current compensation in three-phase power converters.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v12i3.pp2346-2352
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).