Real time hardware implementation of discrete sliding mode fuzzy controlled buck converter using digital signal processor
Abstract
This paper deals with the real time hardware implementation of discrete sliding mode fuzzy control (DSMFC) for buck converter using digital signal processor (DSP). Applications like electric vehicle suspension control, flight dynamic control, robot position control and engine throttle position control; sliding mode control (SMC) plays a major role. Hardware realization is difficult with SMC strategy due to the continuous gain change results in chattering problem and actuator or contact may break. To resolve this problem the fuzzy logic (FL) approach has combined with the robust technique discrete sliding mode control (DSMC) to develop a new strategy for DSMFC. The mathematical modeling of the controller is done using MATLAB/Simulink software and practical design of the converter is also realized. The robustness of the controller is proved by introducing sudden change in input voltage as well as load with the help of switching circuit in hardware realization. The obtained practical results are verified by comparing with the simulation output and reference value.
Keywords
DC-DC converter; Digital signal processor; Discrete sliding mode control; Electric vehicle; Fuzzy logic control; Robot position control
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v12i5.pp4801-4807
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).