Company bankruptcy prediction framework based on the most influential features using XGBoost and stacking ensemble learning

Much Aziz Muslim, Yosza Dasril


Company bankruptcy is often a very big problem for companies. The impact of bankruptcy can cause losses to elements of the company such as owners, investors, employees, and consumers. One way to prevent bankruptcy is to predict the possibility of bankruptcy based on the company's financial data. Therefore, this study aims to find the best predictive model or method to predict company bankruptcy using the dataset from Polish companies bankruptcy. The prediction analysis process uses the best feature selection and ensemble learning. The best feature selection is selected using feature importance to XGBoost with a weight value filter of 10. The ensemble learning method used is stacking. Stacking is composed of the base model and meta learner. The base model consists of K-nearest neighbor, decision tree, SVM, and random forest, while the meta learner used is LightGBM. The stacking model accuracy results can outperform the base model accuracy with an accuracy rate of 97%.


banckruptcy prediction; ensemble learning; feature importance; stacking; XGBoost;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).