Indirect power control of DFIG based on wind turbine operating in MPPT using backstepping approach
Abstract
This paper describes a MPPT control of the stator powers of a DFIG operating within a wind energy system using the backstepping control technique. The objective of this work consists of providing a robust control to the rotor-side converter allowing the stator active power to be regulated at the maximum power extracted from the wind turbine, as well as maintaining the stator reactive power at zero to maintain the power factor at unity, under various conditions. We have used the Matlab/Simulink platform to model the wind system based on a 7.5 kW DFIG and to implement the MPPT control algorithm in a first step, then we have implemented the field-oriented control and the backstepping controller in a second step. The simulation results obtained were very satisfactory with a fast transient response and neglected power ripples. They furthermore confirmed the high robustness of the approach used in dealing with the variation of the internal parameters of the machine.
Keywords
backstepping control; DFIG; lyapunov stability; MPPT; wind turbine;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v11i3.pp1951-1961
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).