Power system operation considering detailed modelling of the natural gas supply network

Ricardo Moreno, Diego Larrahondo, Oscar Florez


The energy transition from fossil-fuel generators to renewable energies represents a paramount challenge. This is mainly due to the uncertainty and unpredictability associated with renewable resources. A greater flexibility is requested for power system operation to fulfill demand requirements considering security and economic restrictions. In particular, the use of gas-fired generators has increased to enhance system flexibility in response to the integration of renewable energy sources. This paper provides a comprehensive formulation for modeling a natural gas supply network to provide gas for thermal generators, considering the use of wind power sources for the operation of the electrical system over a 24-hour period. The results indicate the requirements of gas with different wind power level of integration. The model is evaluated on a network of 20 NG nodes and on a 24-bus IEEE RTS system with various operative settings during a 24-hour period.


Natural gas system; Optimal power flow; Power systems; Renewable energy; Wind power

Full Text:


DOI: http://doi.org/10.11591/ijece.v11i6.pp4740-4750

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).