An index based road feature extraction from LANDSAT-8 OLI images
Abstract
Road feature extraction from the remote sensing images is an arduous task and has a significant role in various applications of urban planning, updating the maps, traffic management, etc. In this paper, a new band combination (B652) to form a road index (RI) from OLI multispectral bands based on the spectral reflectance of asphalt, is presented for road feature extraction. The B652 is converted to road index by normalization. The morphological operators (top-hat or bottom-hat) uses on RI to enhance the roads. To sharpen the edges and for better discrimination of features, shock square filter (SSF), is proposed. Then, an iterative adaptive threshold (IAT) based online search with variational min-max and Markov random fields (MRF) model are used on the SSF image to segment the roads and non-roads. The roads are extracting by using the rules based on the connected component analysis. IAT and MRF model segmentation methods prove the proposed index (RI) able to extract road features productively. The proposed methodology is a combination of saturation based adaptive thresholding and morphology (SATM), and saturation based MRF (SMRF), applied to OLI images of several urban cities of India, producing the satisfactory results. The experimental results with the quantitative analysis presented in the paper.
Keywords
band combination of OLI; road extraction; saturation; shock square filter; top-hat transform
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v11i2.pp1319-1336
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).