Comparing canopy density measurement from UAV and hemispherical photography: an evaluation for medium resolution of remote sensing-based mapping

Deha Agus Umarhadi, Projo Danoedoro

Abstract


UAV and hemispherical photography are common methods used in canopy density measurement. These two methods have opposite viewing angles where hemispherical photography measures canopy density upwardly, while UAV captures images downwardly. This study aims to analyze and compare both methods to be used as the input data for canopy density estimation when linked with a lower spatial resolution of remote sensing data i.e. Landsat image. We correlated the field data of canopy density with vegetation indices (NDVI, MSAVI, and AFRI) from Landsat-8. The canopy density values measured from UAV and hemispherical photography displayed a strong relationship with 0.706 coefficient of correlation. Further results showed that both measurements can be used in canopy density estimation using satellite imagery based on their high correlations with Landsat-based vegetation indices. The highest correlation from downward and upward measurement appeared when linked with NDVI with a correlation of 0.962 and 0.652, respectively. Downward measurement using UAV exhibited a higher relationship compared to hemispherical photography. The strong correlation between UAV data and Landsat data is because both are captured from the vertical direction, and 30 m pixel of Landsat is a downscaled image of the aerial photograph. Moreover, field data collection can be easily conducted by deploying drone to cover inaccessible sample plots.

Keywords


canopy density; hemispherical photography; image processing; landsat-8; remote sensing; UAV; vegetation index;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v11i1.pp356-364

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).