Comparison study of machine learning classifiers to detect anomalies

Nisha P Shetty, Jayashree Shetty, Rohil Narula, Kushagra Tandona

Abstract


In this era of Internet ensuring the confidentiality, authentication and integrity of any resource exchanged over the net is the imperative. Presence of intrusion prevention techniques like strong password, firewalls etc. are not sufficient to monitor such voluminous network traffic as they can be breached easily. Existing signature based detection techniques like antivirus only offers protection against known attacks whose signatures are stored in the database.Thus, the need for real-time detection of aberrations is observed. Existing signature based detection techniques like antivirus only offers protection against known attacks whose signatures are stored in the database. Machine learning classifiers are implemented here to learn how the values of various fields like source bytes, destination bytes etc. in a network packet decides if the packet is compromised or not . Finally the accuracy of their detection is compared to choose the best suited classifier for this purpose. The outcome thus produced may be useful to offer real time detection while exchanging sensitive information such as credit card details.

Keywords


Network attacks ; Bagging; Random Forest; SVM; Neural Network; IDS

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i5.pp5445-5452

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).