Real-time Arabic scene text detection using fully convolutional neural networks

Rajae Moumen, Raddouane Chiheb, Rdouan Faizi

Abstract


The aim of this research is to propose a fully convolutional approach to address the problem of real-time scene text detection for Arabic language. Text detection is performed using a two-steps multi-scale approach. The first step uses light-weighted fully convolutional network: TextBlockDetector FCN, an adaptation of VGG-16 to eliminate non-textual elements, localize wide scale text and give text scale estimation. The second step determines narrow scale range of text using fully convolutional network for maximum performance. To evaluate the system, we confront the results of the framework to the results obtained with single VGG-16 fully deployed for text detection in one-shot; in addition to previous results in the state-of-the-art. For training and testing, we initiate a dataset of 575 images manually processed along with data augmentation to enrich training process. The system scores a precision of 0.651 vs 0.64 in the state-of-the-art and a FPS of 24.3 vs 31.7 for a VGG-16 fully deployed.

Keywords


Arabic text detection; convolutional neural networks; natural language processing; scene text detection;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v11i2.pp1634-1640

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).