Analytical framework for optimized feature extraction for upgrading occupancy sensing performance

Preethi Krishna Rao Mane, K. Narasimha Rao

Abstract


The adoption of the occupancy sensors has become an inevitable in commercial and non-commercial security devices, owing to their proficiency in the energy management. It has been found that the usages of conventional sensors is shrouded with operational problems, hence the use of the Doppler radar offers better mitigation of such problems. However, the usage of Doppler radar towards occupancy sensing in existing system is found to be very much in infancy stage. Moreover, the performance of monitoring using Doppler radar is yet to be improved more. Therefore, this paper introduces a simplified framework for enriching the event sensing performance by efficient selection of minimal robust attributes using Doppler radar. Adoption of analytical methodology has been carried out to find that different machine learning approaches could be further used for improving the accuracy performance for the feature that has been extracted in the proposed system of occuancy system.

Keywords


Occupancy sensing; Doppler radar; Optimization; Machine learning; Surveillance; Motion sensing

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i4.pp4093-4100

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).