Local feature extraction based facial emotion recognition: a survey

Khadija Slimani, Mohamed Kas, Youssef El Merabet, Yassine Ruichek, Rochdi Messoussi

Abstract


Notwithstanding the recent technological advancement, the identification of facial and emotional expressions is still one of the greatest challenges scientists have ever faced. Generally, the human face is identified as a composition made up of textures arranged in micro-patterns. Currently, there has been a tremendous increase in the use of local binary pattern based texture algorithms which have invariably been identified to being essential in the completion of a variety of tasks and in the extraction of essential attributes from an image. Over the years, lots of LBP variants have been literally reviewed. However, what is left is a thorough and comprehensive analysis of their independent performance. This research work aims at filling this gap by performing a large-scale performance evaluation of 46 recent state-of-the-art LBP variants for facial expression recognition. Extensive experimental results on the well-known challenging and benchmark KDEF, JAFFE, CK and MUG databases taken under different facial expression conditions, indicate that a number of evaluated state-of-the-art LBP-like methods achieve promising results, which are better or competitive than several recent state-of-the-art facial recognition systems. Recognition rates of 100%, 98.57%, 95.92% and 100% have been reached for CK, JAFFE, KDEF and MUG databases, respectively.

Keywords


Machine learning; Features extraction; Basic emotion; Image processing

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i4.pp4080-4092

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).