Improving accuracy of Part-of-Speech (POS) tagging using hidden markov model and morphological analysis for Myanmar Language

Dim Lam Cing, Khin Mar Soe

Abstract


In Natural Language Processing (NLP), Word segmentation and Part-of-Speech (POS) tagging are fundamental tasks. The POS information is also necessary in NLP’s preprocessing work applications such as machine translation (MT), information retrieval (IR), etc. Currently, there are many research efforts in word segmentation and POS tagging developed separately with different methods to get high performance and accuracy. For Myanmar Language, there are also separate word segmentors and POS taggers based on statistical approaches such as Neural Network (NN) and Hidden Markov Models (HMMs). But, as the Myanmar language's complex morphological structure, the OOV problem still exists. To keep away from error and improve segmentation by utilizing POS data, segmentation and labeling should be possible at the same time.The main goal of developing POS tagger for any Language is to improve accuracy of tagging and remove ambiguity in sentences due to language structure. This paper focuses on developing word segmentation and Part-of- Speech (POS) Tagger for Myanmar Language. This paper presented the comparison of separate word segmentation and POS tagging with joint word segmentation and POS tagging.

Keywords


morphological analysis; natural language processing; hidden markov model;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i2.pp2023-2030

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).