A new swarm intelligence information technique for improving information balancedness on the skin lesions segmentation

H. J. Abd, Ahmad S. Abdullah, Muhammed Salah Sadiq Alkafaji

Abstract


Methods of image processing can recognize the images of melanoma lesions border in addition to the disease compared to a skilled dermatologist. New swarm intelligence technique depends on meta-heuristic that is industrialized to resolve composite real problems which are problematic to explain by the available deterministic approaches. For an accurate detection of all segmentation and classification of skin lesions, some dealings should be measured which contain, contrast broadening, irregularity quantity, choice of most optimal features, and so into the world. The price essential for the action of progressive disease cases is identical high and the survival percentage is low. Many electronic dermoscopy classifications are advanced depend on the grouping of form, surface and dye features to facilitate premature analysis of malignance. To overcome this problematic, an effective prototypical for accurate boundary detection and arrangement is obtainable. The projected classical recovers the optimization segment of accuracy in its pre-processing stage, applying contrast improvement of lesion area compared to the contextual. In conclusion, optimized features are future fed into of artifical bee colony (ABC) segmentation. Wide-ranging researches have been supported out on four databases named as, ISBI (2016, 2017, 2018) and PH2. Also, the selection technique outclasses and successfully indifferent the dismissed features. The paper shows a different process for lesions optimal segmentation that could be functional to a variation of images with changed possessions and insufficiencies is planned with multistep pre-processing stage.

Keywords


Skin lesion, Automatic segmentation, Median filter, Swarm intelligence techniques

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i6.pp5703-5708

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).