Computational scrutiny of image denoising method found on DBAMF under SPN surrounding

Vorapoj Patanavijit

Abstract


Traditionally, rank order absolute difference (ROAD) has a great similarity capacity for identifying whether the pixel is SPN or noiseless because statistical characteristic of ROAD is desired for a noise identifying objective. As a result, the decision based adaptive median filter (DBAMF) that is found on ROAD technique has been initially proposed for eliminating an impulsive noise since 2010. Consequently, this analyzed report focuses to examine the similarity capacity of denoising method found on DBAMF for diverse SPN Surrounding. In order to examine the denoising capacity and its obstruction of the denoising method found on DBAMF, the four original digital images, comprised of Airplane, Pepper, Girl and Lena, are examined in these computational simulation for SPN surrounding by initially contaminating the SPN with diverse intensity. Later, all contaminated digital images are denoised by the denoising method found on DBAMF. In addition, the proposed denoised image, which is computed by this DBAMF denoising method, is confronted with the other denoised images, which is computed by Standard median filter (SMF), Gaussian Filter and Adaptive median filter (AMF) for demonstrating the DBAMF capacity under subjective measurement aspect.

Keywords


Digital image denoising; ROAD (rank-ordered absolute differences); SMF (standard median filter); AMF (adaptive median filter)

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i4.pp4109-4117

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).