Framework for efficient transformation for complex medical data for improving analytical capability
Abstract
The adoption of various technological advancement has been already adopted in the area of healthcare sector. This adoption facilitates involuntary generation of medical data that can be autonomously programmed to be forwarded to a destined hub in the form of cloud storage units. However, owing to such technologies there is massive formation of complex medical data that significantly acts as an overhead towards performing analytical operation as well as unwanted storage utilization. Therefore, the proposed system implements a novel transformation technique that is capable of using a template based stucture over cloud for generating structured data from highly unstructured data in a non-conventional manner. The contribution of the propsoed methodology is that it offers faster processing and storage optimization. The study outcome also proves this fact to show propsoed scheme excels better in performance in contrast to existing data transformation scheme.
Keywords
Data transformation; Healthcare analytics; Medical; Structurization; Text mining
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v10i5.pp4853-4862
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).