Improved feature exctraction process to detect seizure using CHBMIT-dataset

Raveendra Kumar T. H., C. K. Narayanappa

Abstract


One of the most dangerous neurological disease, which is occupying worldwide, is epilepsy. Fraction of second nerves in the brain starts impulsion i.e. electrical discharge, which is higher than the normal pulsing. So many researches have done the investigation and proposed the numerous methodology. However, our methodology will give effective result in feature extraction. Moreover, we used numerous number of statistical moments features. Existing approaches are implemented on few statistical moments with respect to time and frequency. Our proposed system will give the way to find out the seizure-effected part of the brain very easily using TDS, FDS, Correlation and Graph presentation. The resultant value will give the huge difference between normal and seizure effected brain. It also explore the hidden features of the brain.

Keywords


CHBMIT-dataset; correlation; FDS; feature extraction; graph; statistical moments; TDS;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v11i1.pp827-843

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).