Performance investigation of stand-alone induction generator based on STATCOM for wind power application
Abstract
Self-Excited induction generators (SEIG) display a low voltage and frequency regulation due to variable applied load and input rotation speed. Current work presents a simulation and performance analysis of a three-phase wind-driven, SEIG connect to a three-phase load. In addition, an investigation of the dynamic operation of the induction generator from starting steady state until no-load operation. It is assumed that the input mechanical power is constant where the rotor of the SEIG rotates at a constant speed. The value of the excitation capacitance which is necessary to the operation of the induction generator also computed to ensure a smooth and self-excitation starting. The output voltage of the generator is adjusted by varying the reactive power injected by STATCOM. A 3-phase IGBT voltage source inverter with a fuel cell input supply is connected as STATCOM which is used to compensate for the reduction in the supply voltage and its frequency due to variation occurred in the applied loads. This work includes introducing a neuro-fuzzyy logic controller to enhance the performance of the SEIG by regulation the generated voltage and frequency The dynamic model of SEIG with STATCOM and loads are implemented using MATLAB/SIMULINK
Keywords
elf-Excited Induction Generators; Dynamic operation; Excitation capacitance; STATCOM; Neuro- fuzzy
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v10i6.pp5570-5578
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).