Frequent itemset mining: technique to improve eclat based algorithm
Abstract
In frequent itemset mining, the main challenge is to discover relationships between data in a transactional database or relational database. Various algorithms have been introduced to process frequent itemset. Eclat based algorithms are one of the prominent algorithm used for frequent itemset mining. Various researches have been conducted based on Eclat based algorithm such as Tidset, dEclat, Sortdiffset and Postdiffset. The algorithm has been improvised along the time. However, the utilization of physical memory and processing time become the main problem in this process. This paper reviews and presents a comparison of various Eclat based algorithms for frequent itemset mining and propose an enhancement technique of Eclat based algorithm to reduce processing time and memory usage. The experimental result shows some improvement in processing time and memory utilization in frequent itemset mining.
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v9i6.pp5471-5478
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).