Microarray spot partitioning by autonoumsly organising maps thorugh contour model

Karthik S. A., Manjunath S. S.

Abstract


In cDNA microarray image analysis, classification of pixels as forefront area and the area covered by background is very challenging. In microarray experimentation, identifying forefront area of desired spots is nothing but computation of forefront pixels concentration, area covered by spot and shape of the spots. In this piece of writing, an innovative way for spot partitioning of microarray images using autonomously organizing maps (AOM) method through C-V model has been proposed. Concept of neural networks has been incorpated to train and to test microarray spots.In a trained AOM the comprehensive information arising from the prototypes of created neurons are clearly integrated to decide whether to get smaller or get bigger of contour. During the process of optimization, this is done in an iterative manner. Next using C-V model, inside curve area of trained spot is compared with test spot finally curve fitting is done.The presented model can handle spots with variations in terms of shape and quality of the spots and meanwhile it is robust to the noise. From the review of experimental work, presented approach is accurate over the approaches like C-means by fuzzy, Morphology sectionalization.

Keywords


AOM; C-V Model; Level Set; Microarray; Spot partition

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i1.pp746-756

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).