High level speaker specific features modeling in automatic speaker recognition system
Abstract
Spoken words convey several levels of information. At the primary level, the speech conveys words or spoken messages, but at the secondary level, the speech also reveals information about the speakers. This work is based on the high-level speaker-specific features on statistical speaker modeling techniques that express the characteristic sound of the human voice. Using Hidden Markov model (HMM), Gaussian mixture model (GMM), and Linear Discriminant Analysis (LDA) models build Automatic Speaker Recognition (ASR) system that are computational inexpensive can recognize speakers regardless of what is said. The performance of the ASR system is evaluated for clear speech to a wide range of speech quality using a standard TIMIT speech corpus. The ASR efficiency of HMM, GMM, and LDA based modeling technique are 98.8%, 99.1%, and 98.6% and Equal Error Rate (EER) is 4.5%, 4.4% and 4.55% respectively. The EER improvement of GMM modeling technique based ASR systemcompared with HMM and LDA is 4.25% and 8.51% respectively.
Keywords
automatic speaker recognition (ASR); extreme learning machine (ELM); gaussian mixer model (GMM); hidden markov model (HMM); linear discriminant analysis (LDA); support vector machines (SVM); universal background model (UBM);
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v10i2.pp1859-1867
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).