An enhanced particle swarm optimization algorithm
Abstract
In this paper, an enhanced stochastic optimization algorithm based on the basic Particle Swarm Optimization (PSO) algorithm is proposed. The basic PSO algorithm is built on the activities of the social feeding of some animals. Its parameters may influence the solution considerably. Moreover, it has a couple of weaknesses, for example, convergence speed and premature convergence. As a way out of the shortcomings of the basic PSO, several enhanced methods for updating the velocity such as Exponential Decay Inertia Weight (EDIW) are proposed in this work to construct an Enhanced PSO (EPSO) algorithm. The suggested algorithm is numerically simulated established on five benchmark functions with regards to the basic PSO approaches. The performance of the EPSO algorithm is analyzed and discussed based on the test results.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v9i6.pp4904-4907
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).