Internal model controller based PID with fractional filter design for a nonlinear process
Abstract
In this paper, an Internal model Controller (IMC) based PID with fractional filter for a first order plus time delay process is proposed. The structure of the controller has two parts, one is integer PID controller part cascaded with fractional filter. The proposed controller has two tuning factors λ, filter time constant and a, fractional order of the filter. In this work, the two factors are decided in order to obtain low Integral Time Absolute Error (ITAE). The effectiveness of the proposed controller is studied by considering a non linear (hopper tank) process. The experimental set up is fabricated in the laboratory and then data driven model is developed from the experimental data. The non linear process model is linearised using piecewise linearization and two linear regions are obtained. At each operating point, linear first order plus dead time model is obtained and the controller is designed for the same. To show the practical applicability, the proposed controller is implemented for the proposed experimental laboratory prototype.
Keywords
IMC based PID, Fractional filter, Hopper tank
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v10i1.pp243-254
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).