Mobile robot controller using novel hybrid system
Abstract
Hybrid neuro-fuzzy controller is one of the techniques that is used as a tool to control a mobile robot in unstructured environment. In this paper a novel neuro-fuzzy technique is proposed in order to tackle the problem of mobile robot autonomous navigation in unstructured environment. Obstacle avoidance is an important task in the field of robotics, since the goal of autonomous robot is to reach the destination without collision. The objective is to make the robot move along a collision free trajectory until it reaches its target. The proposed approach uses the artificial neural network instead of the fuzzified engine then the output from it is processed using adaptive inference engine and defuzzification engine. In this approach, the real processing time is reduce that is increase the mobile robot response. The proposed neuro-fuzzy controller is evaluated subjectively and objectively with other approaches and also the processing time is taken in consideration.
Keywords
Fuzzification; Fuzzy logic; Hybrid neuro-fuzzy; Mobile robot; Unstructured environment
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v10i1.pp1027-1034
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).