UCSY-SC1: A Myanmar speech corpus for automatic speech recognition
Abstract
This paper introduces a speech corpus which is developed for Myanmar Automatic Speech Recognition (ASR) research. Automatic Speech Recognition (ASR) research has been conducted by the researchers around the world to improve their language technologies. Speech corpora are important in developing the ASR and the creation of the corpora is necessary especially for low-resourced languages. Myanmar language can be regarded as a low-resourced language because of lack of pre-created resources for speech processing research. In this work, a speech corpus named UCSY-SC1 (University of Computer Studies Yangon - Speech Corpus1) is created for Myanmar ASR research. The corpus consists of two types of domain: news and daily conversations. The total size of the speech corpus is over 42 hrs. There are 25 hrs of web news and 17 hrs of conversational recorded data.
The corpus was collected from 177 females and 84 males for the news data and 42 females and 4 males for conversational domain. This corpus was used as training data for developing Myanmar ASR. Three different types of acoustic models such as Gaussian Mixture Model (GMM) - Hidden Markov Model (HMM), Deep Neural Network (DNN), and Convolutional Neural Network (CNN) models were built and compared their results. Experiments were conducted on different data sizes and evaluation is done by two test sets: TestSet1, web news and TestSet2, recorded conversational data. It showed that the performance of Myanmar ASRs using this corpus gave satisfiable results on both test sets. The Myanmar ASR using this corpus leading to word error rates of 15.61% on TestSet1 and 24.43% on TestSet2.
The corpus was collected from 177 females and 84 males for the news data and 42 females and 4 males for conversational domain. This corpus was used as training data for developing Myanmar ASR. Three different types of acoustic models such as Gaussian Mixture Model (GMM) - Hidden Markov Model (HMM), Deep Neural Network (DNN), and Convolutional Neural Network (CNN) models were built and compared their results. Experiments were conducted on different data sizes and evaluation is done by two test sets: TestSet1, web news and TestSet2, recorded conversational data. It showed that the performance of Myanmar ASRs using this corpus gave satisfiable results on both test sets. The Myanmar ASR using this corpus leading to word error rates of 15.61% on TestSet1 and 24.43% on TestSet2.
Keywords
Automatic Speech Recognition; Myanmar Language; Speech Corpus; Convolutional Neural Network (CNN)
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v9i4.pp3194-3202
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).