Robust foreground modelling to segment and detect multiple moving objects in videos
Abstract
Last decade has witnessed an ever increasing number of video surveillance installations due to the rise of security concerns worldwide. With this comes the need for video analysis for fraud detection, crime investigation, traffic monitoring to name a few. For any kind of video analysis application, detection of moving objects in videos is a fundamental step. In this paper, an efficient foreground modelling method to segment multiple moving objects is implemented. Proposed method significantly reduces noise thereby accurately segmenting region of interest under dynamic conditions while handling occlusion to a large extent. Extensive performance analysis shows that the proposed method was found to give far better results when compared to the de facto standard as well as relatively new approaches used for
moving object detection.
moving object detection.
Keywords
Moving object detection;Foreground Modelling;Video Analysis;Background Subtraction;Mean Averaging
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v10i2.pp1337-1345
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).