A hybrid bacterial foraging and modified particle swarm optimization for model order reduction
Abstract
This paper study the model reduction procedures used for the reduction of large-scale dynamic models into a smaller one through some sort of differential and algebraic equations. A confirmed relevance between these two models exists, and it shows same characteristics under study. These reduction procedures are generally utilized for mitigating computational complexity, facilitating system analysis, and thence reducing time and costs. This paper comes out with a study showing the impact of the consolidation between the Bacterial-Foraging (BF) and Modified particle swarm optimization (MPSO) for the reduced order model (ROM). The proposed hybrid algorithm (BF-MPSO) is comprehensively compared with the BF and MPSO algorithms; a comparison is also made with selected existing techniques.
Keywords
model order reduction; PSO; BF;ISE; BF-MPSO;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v9i2.pp1100-1109
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).