Parallelising reception and transmission in queues of secondary users
Abstract
In a cognitive radio network, the secondary users place the packets to be transmitted on a queue to control the order of arrival and to adapt to the network state. Previous conceptions
assigned to each secondary user a single queue that contains both received and forwarded packets. Our present article divides the main queue into two sub queues: one to receive the arrived packets and the other to transmit the available packets. This approach reduces the transmission delay due on the one hand; to the shifting of data placed on the single queue, and on the other hand; to the sequential processing of reception and transmission, in theprevious designs. All without increasing the memory capacity of the queue, in the new approach.
assigned to each secondary user a single queue that contains both received and forwarded packets. Our present article divides the main queue into two sub queues: one to receive the arrived packets and the other to transmit the available packets. This approach reduces the transmission delay due on the one hand; to the shifting of data placed on the single queue, and on the other hand; to the sequential processing of reception and transmission, in theprevious designs. All without increasing the memory capacity of the queue, in the new approach.
Keywords
Cognitive radio network; Queue management; Transmission delay; Data shifting; Input flow; Output flow
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v9i4.pp3221-3227
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).