Demand-driven Gaussian window optimization for executing preferred population of jobs in cloud clusters

Vaidehi M, T. R. Gopalakrishnan

Abstract


Scheduling is one of the essential enabling technique for Cloud computing which facilitates efficient resource utilization among the jobs scheduled for processing. However, it experiences performance overheads due to the inappropriate provisioning of resources to requesting jobs. It is very much essential that the performance of Cloud is accomplished through intelligent scheduling and allocation of resources. In this paper, we propose the application of Gaussian window where jobs of heterogeneous in nature are scheduled in the round-robin fashion on different Cloud clusters. The clusters are heterogeneous in nature having datacenters with varying sever capacity. Performance evaluation results show that the proposed algorithm has enhanced the QoS of the computing model. Allocation of Jobs to specific Clusters has improved the system throughput and has reduced the latency.


Keywords


cloud computing; demand-driven; efficiency; instantaneous utilization; jobs; resource utilization; scheduling;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v9i3.pp1637-1644

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).