Design of a Monitoring-combined Siting Scheme for Electric Vehicle Chargers

Junghoon Lee, Gyung-Leen Park

Abstract


This paper designs a siting scheme for public electric vehicle chargers based on a genetic algorithm working on charger monitoring streams. The monitoring-combined allocation scheme runs on a long-term basis, iterating the process of collecting data, analyzing demand, and selecting candidates. The analysis of spatio-temporal archives, acquired from the fast chargers currently in operation, focuses on the per-charger hot hour and proximity effect to justify demand balancing in geographic cluster level. It leads to the definition of a fitness function representing the standard deviation of per-charger load and cluster-by-cluster distribution. In a chromosome, each binary integer is associated with a candidate and its static fields include the index to the cluster to which it is belonging. The performance result obtained from a prototype implementation reveals that the proposed scheme can stably distribute the charging load with an addition of a new charger, achieving the reduction of standard deviation from 8.7 % to 4.7 % in the real-world scenario.

Keywords


cluster-level demand share; EV charging infrastructure; genetic algorithm; public charger siting; real-time monitoring data;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v8i6.pp5303-5310

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).