Exploiting 2-Dimensional Source Correlation in Channel Decoding with Parameter Estimation

Muhammad Izzat Amir Mohd Nor, Mohd Azri Mohd Izhar, Norulhusna Ahmad, Hazilah Md. Kaidi

Abstract


Traditionally, it is assumed that source coding is perfect and therefore, the redundancy of the source encoded bit-stream is zero. However, in reality, this is not the case as the existing source encoders are imperfect and yield residual redundancy at the output. The residual redundancy can be exploited by using Joint Source Channel Coding (JSCC) with Markov chain as the source. In several studies, the statistical knowledge of the sources has been assumed to be perfectly available at the receiver. Although the result was better in terms of the BER performance, practically, the source correlation knowledge were not always available at the receiver and thus, this could affect the reliability of the outcome. The source correlation on all rows and columns of the 2D sources were well exploited by using a modified Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm in the decoder. A parameter estimation technique was used jointly with the decoder to estimate the source correlation knowledge. Hence, this research aims to investigate the parameter estimation for 2D JSCC system which reflects a practical scenario where the source correlation knowledge are not always available. We compare the performance of the proposed joint decoding and estimation technique with the ideal 2D JSCC system with perfect knowledge of the source correlation knowledge. Simulation results reveal that our proposed coding scheme performs very close to the ideal 2D JSCC system.

Keywords


bahl-cocke-jelinek-raviv algorithm; baum-welsh algorithm; joint source channel coding; markov chain; parameter estimation

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v8i4.pp2633-2642

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).