Speech Recognition Using Combined Fuzzy and Ant Colony algorithm

Fooad Jalili, Milad Jafari Barani

Abstract


In recent years various methods has been proposed for speech recognition and removing noise from the speech signal became an important issue. In this paper a fuzzy system has been proposed for speech recognition that can obtain accurate results using classification of speech signals with “Ant Colony” algorithm.  First, speech samples are given to the fuzzy system to obtain a pattern for every set of signals that can be helpful for dimensionality reduction, easier checking of outcome and better recognition of signals.  Then, the “ACO” algorithm is used to cluster these signals and determine a cluster for each input signal. Also, with this method we will be able to recognize noise and consider it in a separate cluster and remove it from the input signal. Results show that the accuracy for speech detection and noise removal is desirable.


Keywords


Speech recognition; Fuzzy logic; Ant Colony; Noise removal; Clustering

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v6i5.pp2205-2210

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).