Cerebellar Model Controller with new Model of Granule Cell-golgi Cell Building Blocks and Two-phase Learning Acquires Multitude of Generalization Capabilities in Controlling Robot Joint without Exponential Growth in Complexity

Lavdim Kurtaj, Vjosa Shatri, Ilir Limani

Abstract


Processing in the cerebellum is roughly described as feed forward processing of incoming information over three layers of the cerebellar cortex that send intermediate output to deep cerebellar nuclei, the only output from the cerebellum. Beside this main picture there are several feedback routes, mainly not included in models. In this paper we use new model for neuronal circuit of the cerebellar granule cell layer, as collection of idealized granule cell–golgi cell building blocks with capability of generating multi-dimensional receptive fields modulated by separate input coming to lower dendrite tree of Golgi cell. Resulting cerebellar model controller with two-phase learning will acquire multitude of generalization capabilities when used as robot joint controller. This will usually require more than one Purkinje cell per output. Functionality of granule cell-Golgi cell building block was evaluated with simulations using Simulink single compartment spiking neuronal model. Trained averaging cerebellar model controller attains very good tracking results for wide range of unlearned slower and faster trajectories, with additional improvements by relearning at faster trajectories. Inclusion of new dynamical effects to the controller results with linear growth in complexity for inputs targeting lower dendrite tree of Golgi cell, important for control applications in robotics, but not only.

Keywords


averaging cerebellar model; cerebellar granule cell layer; cerebellar model controller; generalization; golgi cell lower dendrite tree;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v8i6.pp4292-4309

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).