A Neural Network Approach to Identify Hyperspectral Image Content

Puttaswamy Malali Rajegowda, Balamurugan P.

Abstract


A Hyperspectral is the imaging technique that contains very large dimension data with the hundreds of channels. Meanwhile, the Hyperspectral Images (HISs) delivers the complete knowledge of imaging; therefore applying a classification algorithm is very important tool for practical uses. The HSIs are always having a large number of correlated and redundant feature, which causes the decrement in the classification accuracy; moreover, the features redundancy come up with some extra burden of computation that without adding any beneficial information to the classification accuracy. In this study, an unsupervised based Band Selection Algorithm (BSA) is considered with the Linear Projection (LP) that depends upon the metric-band similarities. Afterwards Monogenetic Binary Feature (MBF) has consider to perform the ‘texture analysis’ of the HSI, where three operational component represents the monogenetic signal such as; phase, amplitude and orientation. In post processing classification stage, feature-mapping function can provide important information, which help to adopt the Kernel based Neural Network (KNN) to optimize the generalization ability. However, an alternative method of multiclass application can be adopt through KNN, if we consider the multi-output nodes instead of taking single-output node.


Keywords


band selection algorithm (BSA); hyperspectral image (HSI); linear projection (LP); monogenetic binary feature (MBF); neural network (NN)

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v8i4.pp2115-2125

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).