A Survey of Arabic Text Classification Models

Ahed M. F. Al-Sbou

Abstract


There is a huge content of Arabic text available over online that requires an organization of these texts. As result, here are many applications of natural languages processing (NLP) that concerns with text organization. One of the is text classification (TC). TC helps to make dealing with unorganized text. However, it is easier to classify them into suitable class or labels. This paper is a survey of Arabic text classification. Also, it presents comparison among different methods in the classification of Arabic texts, where Arabic text is represented a complex text due to its vocabularies. Arabic language is one of the richest languages in the world, where it has many linguistic bases. The researche in Arabic language processing is very few compared to English. As a result, these problems represent challenges in the classification, and organization of specific Arabic text. Text classification (TC) helps to access the most documents, or information that has already classified into specific classes, or categories to one or more classes or categories. In addition, classification of documents facilitate search engine to decrease the amount of document to, and then to become easier to search and matching with queries.


Keywords


arabic language processing, arabic text categorization; arabic text mining, classification algorithms, clustering algorithms, natural languages processing, text classification,

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v8i6.pp4352-4355

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).