OFCS: Optimized Framework of Compressive Sensing for Medical Images in Bottleneck Network Condition
Abstract
Compressive sensing is one of teh cost effective solution towards performing compression of heavier form of signals. We reviewed the existing research contribution towards compressive sensing to find that existing system doesnt offer any form of optimization for which reason the signal are superiorly compressed but at the cost of enough resources. Therefore, we introduce a framework that optimizes the performance of the compressive sensing by introducing 4 sequential algorithms for performing Random Sampling, Lossless Compression for region-of-interest, Compressive Sensing using transform-based scheme, and optimization. The contribution of proposed paper is a good balance between computational efficiency and quality of reconstructed medical image when transmitted over network with low channel capacity. The study outcome shows that proposed system offers maximum signal quality and lower algorithm processing time in contrast to existing compression techniuqes on medical images.
Keywords
Compression; compressive sensing; medical image; normalization; region of interest; transform
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v8i5.pp2829-2838
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).