A Multi Criteria Recommendation Engine Model for Cloud Renderfarm Services
Abstract
Cloud services that provide a complete platform for rendering the animation files using the resources in the cloud are known as cloud renderfarm services. This work proposes a multi criteria recommendation engine model for recommending these Cloud renderfarm services to animators. The services are recommended based on the functional requirements of the animation file to be rendered like the rendering software, plug-in required etc and the non functional Quality of Service (QoS) requirements like render node cost, time taken to upload animation files etc. The proposed recommendation engine model uses a domain specific ontology of renderfarm services to identify the right services that could satisfy the functional requirements of the user and ranks the identified services using the popular Multi Criteria Decision Analysis method like Simple Additive Weighting (SAW). The ranked list of services is provided as recommended services to the animators in the ranking order. The Recommendation model was tested to rank and recommend the cloud renderfarm services in multi criteria requirements by assigning different QoS criteria weight for each scenario. The ranking based recommendations were generated for six different scenarios and the results were analyzed. The results show that the services recommended for each scenario were different and were highly dependent on the weights assigned to each criterion.
Keywords
Cloud renderfarm services; engine model; quality of service (QoS); simple additive weighting
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v8i5.pp3214-3220
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).