Query by Example of Speaker Audio Signals using Power Spectrum and MFCCs

Pafan Doungpaisan, Anirach Mingkhwan


Search engine is the popular term for an information retrieval (IR) system. Typically, search engine can be based on full-text indexing. Changing the presentation from the text data to multimedia data types make an information retrieval process more complex such as a retrieval of image or sounds in large databases. This paper introduces the use of language and text independent speech as input queries in a large sound database by using Speaker identification algorithm. The method consists of 2 main processing first steps, we separate vocal and non-vocal identification after that vocal be used to speaker identification for audio query by speaker voice. For the speaker identification and audio query by process, we estimate the similarity of the example signal and the samples in the queried database by calculating the Euclidian distance between the Mel frequency cepstral coefficients (MFCC) and Energy spectrum of acoustic features. The simulations show that the good performance with a sustainable computational cost and obtained the average accuracy rate more than 90%.


speaker identification, acoustic signal processing, content-based audio, retrieval, speaker recognition, database query processing,

Full Text:


DOI: http://doi.org/10.11591/ijece.v7i6.pp3369-3384

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).