Network Reconfiguration of Primary Distribution System Using GWO Algorithm
Abstract
This manuscript presents a feeder reconfiguration in primary distribution networks with an objective of minimizing the real power loss or maximization of power loss reduction. An optimal switching for the network reconfiguration problem is introduced in this article based on step by step switching and simultaneous switching. This paper proposes a Grey Wolf Optimization (GWO) algorithm to solve the feeder reconfiguration problem through fitness function corresponding to optimum combination of switches in power distribution systems. The objective function is formulated to solve the reconfiguration problem which includes minimization of real power loss. A nature inspired Grey Wolf Optimization Algorithm is utilized to restructure the power distribution system and identify the optimal switches corresponding minimum power loss in the distribution network. The GWO technique has tested on standard IEEE 33-bus and 69-bus systems and the results are presented.
Keywords
grey wolf optimization, network reconfiguration, radial structure, loss reduction, total real power loss,
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v7i6.pp3226-3234
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).