A Novel Integrated Framework to Ensure Better Data Quality in Big Data Analytics over Cloud Environment
Abstract
With advent of Big Data Analytics, the healthcare system is increasingly adopting the analytical services that is ultimately found to generate massive load of highly unstructured data. We reviewed the existing system to find that there are lesser number of solutions towards addressing the problems of data variety, data uncertainty, and data speed. It is important that an error-free data should arrive in analytics. Existing system offers single-hand solution towards single platform. Therefore, we introduced an integrated framework that has the capability to address all these three problems in one execution time. Considering the synthetic big data of healthcare, we carried out the investigation to find that our proposed system using deep learning architecture offers better optimization of computational resources. The study outcome is found to offer comparatively better response time and higher accuracy rate as compared to existing optimization technqiues that is found and practiced widely in literature.
Keywords
big data analytics, data speed, data uncertainty, data variety,
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v7i5.pp2798-2805
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).