Family Relationship Identification by Using Extract Feature of Gray Level Co-occurrence Matrix (GLCM) Based on Parents and Children Fingerprint

Suharjito Suharjito, Bahtiar Imran, Abba Suganda Girsang


This study aims to find out the relations correspondence by using Gray Level Co-occurrence Matrix (GLCM) feature on parents and children finger print. The analysis is conducted by using the finger print of parents and family in one family There are 30 families used as sample with 3 finger print consists of mothers, fathers, and children finger print. Fingerprints data were taken by fingerprint digital persona u are u 4500 SDK. Data analysis is conducted by finding the correlation value between parents and children fingerprint by using correlation coefficient that gained from extract feature GLCM, both for similar family and different family. The study shows that the use of GLCM Extract Feature, normality data, and Correlation Coefficient could identify the correspondence relations between parents and children fingerprint on similar and different family. GLCM with four features (correlation, homogeneity, energy and contrast) are used to give good result. The four sides (0o, 45o, 90o and 135o) are used. It shows that side 0o gives the higher accurate identification compared to other sides.


correlation coefficient, correspondence, fingerprint, gray level co-occurrence, matrix,

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).