SVM Classification of MRI Brain Images for Computer-Assisted Diagnosis
Abstract
Magnetic Resonance Imaging is a powerful technique that helps in the diagnosis of various medical conditions. MRI Image pre-processing followed by detection of brain abnormalities, such as brain tumors, are considered in this work. These images are often corrupted by noise from various sources. The Discrete Wavelet Transforms (DWT) with details thresholding is used for efficient noise removal followed by edge detection and threshold segmentation of the denoised images. Segmented image features are then extracted using morphological operations. These features are finally used to train an improved Support Vector Machine classifier that uses a Gausssian radial basis function kernel. The performance of the classifier is evaluated and the results of the classification show that the proposed scheme accurately distinguishes normal brain images from the abnormal ones and benign lesions from malignant tumours. The accuracy of the classification is shown to be 100% which is superior to the results reported in the literature.
Keywords
discrete wavelet transform, support vector machine, classifier, feature extraction, MRI brain image processing, image segmentation,
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v7i5.pp2555-2564
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).