A Novel Approach Based on Decreased Dimension and Reduced Gray Level Range Matrix Features for Stone Texture Classification

G. S. N. Murthy, Srininvasa Rao. V, T. Veerraju

Abstract


The human eye can easily identify the type of textures in flooring of the houses and in the digital images visually.  In this work, the stone textures are grouped into four categories. They are bricks, marble, granite and mosaic. A novel approach is developed for decreasing the dimension of stone image and for reducing the gray level range of the image without any loss of significant feature information. This model is named as “Decreased Dimension and Reduced Gray level Range Matrix (DDRGRM)” model. The DDRGRM model consists of 3 stages.  In stage 1, each 5×5 sub dimension of the stone image is reduced into 2×2 sub dimension without losing any important qualities, primitives, and any other local stuff.  In stage 2, the gray level of the image is reduced from 0-255 to 0-4 by using fuzzy concepts.  In stage 3, Co-occurrence Matrix (CM) features are derived from the DDRGRM model of the stone image for stone texture classification.  Based on the feature set values, a user defined algorithm is developed to classify the stone texture image into one of the 4 categories i.e. Marble, Brick, Granite and Mosaic. The proposed method is tested by using the K-Nearest Neighbor Classification algorithm with the derived texture features.  To prove the efficiency of the proposed method, it is tested on different stone texture image databases.  The proposed method resulted in high classification rate when compared with the other existing methods.

Keywords


classification, co-occurrence matrix, fuzzy logic, reduced dimensionality, stone texture,

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v7i5.pp2502-2513

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).